

1


## System of two $2^{\text {nd }}-$ order initial-value problems

- We will show this by example:

$$
\begin{array}{r}
y^{(2)}(t)+2 y^{(1)}(t)+y(t)+z(t)=\sin (t) \\
z^{(2)}(t)+z^{(1)}(t)+z(t)+y(t)=\cos (t)
\end{array}
$$

- This requires four initial conditions:

$$
\begin{aligned}
y\left(t_{0}\right) & =y_{0} \\
y^{(1)}\left(t_{0}\right) & =y_{0}^{(1)} \\
z\left(t_{0}\right) & =z_{0} \\
z^{(1)}\left(t_{0}\right) & =z_{0}^{(1)}
\end{aligned}
$$

- We will represent:

$$
\begin{aligned}
y(t) & =w_{0}(t) \\
y^{(1)}(t) & =w_{1}(t) \\
z(t) & =w_{2}(t) \\
z^{(1)}(t) & =w_{3}(t)
\end{aligned}
$$

- We can immediately translate the initial conditions:

$$
\begin{aligned}
y\left(t_{0}\right) & =y_{0} & w_{0}\left(t_{0}\right)=y_{0} \\
y^{(1)}\left(t_{0}\right) & =y_{0}^{(1)} & w_{1}\left(t_{0}\right)=y_{0}^{(1)} \\
z\left(t_{0}\right) & =z_{0} & w_{2}\left(t_{0}\right)=z_{0} \\
z^{(1)}\left(t_{0}\right) & =z_{0}^{(1)} & w_{3}\left(t_{0}\right)=z_{0}^{(1)}
\end{aligned}
$$

## System of two $2^{\text {nd }}-$ order initial-value problems

- We also immediately note that:

$$
\begin{aligned}
& w_{0}^{(1)}(t)=y^{(1)}(t)=w_{1}(t) \\
& w_{2}^{(1)}(t)=z^{(1)}(t)=w_{3}(t)
\end{aligned}
$$

- That leaves us with determining $w_{1}^{(1)}(t), w_{3}^{(1)}(t)$

$$
\begin{aligned}
& y^{(2)}(t)=\sin (t)-2 y^{(1)}(t)-y(t)-z(t) \\
& z^{(2)}(t)=\cos (t)-z^{(1)}(t)-z(t)-y(t) \\
& w_{1}^{(1)}(t)=\sin (t)-2 w_{1}(t)-w_{0}(t)-w_{2}(t) \\
& w_{3}^{(1)}(t)=\cos (t)-w_{3}(t)-w_{2}(t)-w_{0}(t)
\end{aligned}
$$

5

## Approximating solutions to systems of higher-order initial-value problems

## System of two $2^{\text {nd }}-$ order initial-value problems

- Thus, we have:

$$
\mathbf{w}^{(1)}(t)=\left(\begin{array}{c}
w_{1}(t) \\
\sin (t)-2 w_{1}(t)-w_{0}(t)-w_{2}(t) \\
w_{3}(t) \\
\cos (t)-w_{3}(t)-w_{2}(t)-w_{0}(t)
\end{array}\right) \quad \mathbf{w}\left(t_{0}\right)=\left(\begin{array}{c}
y_{0} \\
y_{0}^{(1)} \\
z_{0} \\
z_{0}^{(1)}
\end{array}\right)
$$

- We can write this as a function:

```
vector f( double t, vector w ) {
    return vector{ 4, (double[]){
                        w(1),
                        std::sin(t) - 2*w(1) - w(0) - w(2),
                    w(3),
                        std::cos(t) - w(3) - w(2) - w(0)
        } };
    }
```



## System of two $2^{\text {nd }}-$ order initial-value problems

- Plotting the actual solution versus the


7

Approximating solutions to systems of higher-order initial-value problems

## System of two $2^{\text {nd }}$-order initial-value problems



- Thus, if we had four coupled ODEs:

$$
\begin{aligned}
& u_{1}^{(4)}(t)=f_{1}\left(t, u_{1}(t), \ldots, u_{4}^{(2)}(t)\right) \\
& u_{2}^{(2)}(t)=f_{2}\left(t, u_{1}(t), \ldots, u_{4}^{(2)}(t)\right) \\
& u_{3}^{(2)}(t)=f_{3}\left(t, u_{1}(t), \ldots, u_{4}^{(2)}(t)\right) \\
& u_{4}^{(3)}(t)=f_{4}\left(t, u_{1}(t), \ldots, u_{4}^{(2)}(t)\right)
\end{aligned}
$$

- This requires eleven initial conditions
- This would require us to define a system of eleven $1^{\text {st_ }}$ order initial-value problems

9

Approximating solutions to systems of higher-order initial-value problems
Other systems higher-order initial-value problems

$$
w_{0}^{(1)}(t)=w_{1}(t)
$$

- Thus we would reformulate as follows:

$$
w_{1}^{(1)}(t)=w_{2}(t)
$$

$$
\begin{aligned}
& u_{1}^{(4)}(t)=f_{1}\left(t, u_{1}(t), \ldots, u_{4}^{(2)}(t)\right) \\
& u_{2}^{(2)}(t)=f_{2}\left(t, u_{1}(t), \ldots, u_{4}^{(2)}(t)\right) \\
& u_{3}^{(2)}(t)=f_{3}\left(t, u_{1}(t), \ldots, u_{4}^{(2)}(t)\right) \\
& u_{4}^{(3)}(t)=f_{4}\left(t, u_{1}(t), \ldots, u_{4}^{(2)}(t)\right)
\end{aligned}
$$

$$
w_{2}^{(1)}(t)=w_{3}(t)
$$

$$
w_{3}^{(1)}(t)=f_{1}(t, \mathbf{w}(t))
$$

$$
w_{4}^{(1)}(t)=w_{5}(t)
$$

$$
w_{5}^{(1)}(t)=f_{2}(t, \mathbf{w}(t))
$$

$$
w_{6}^{(1)}(t)=w_{7}(t)
$$

$$
w_{7}^{(1)}(t)=f_{3}(t, \mathbf{w}(t))
$$

$$
w_{8}^{(1)}(t)=w_{9}(t)
$$

$$
w_{9}^{(1)}(t)=w_{10}(t)
$$

$$
w_{10}^{(1)}(t)=f_{4}(t, \mathbf{w}(t))
$$

10

Approximating solutions to systems of higher-order initial-value problems

## Summary

- Following this topic, you now
- Understand how to convert a system of higher-order initial-value problems into a system of $1^{\text {st. }}$-order initial-value problems
- Have seen an example and its solution


## References

[1] https://en.wikipedia.org/wiki/Initial_value_problem


13


14

## Disclaimer

These slides are provided for the ECE 204 Numerical methods course taught at the University of Waterloo. The material in it reflects the author's best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.


